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Abstract

The area under the load–displacement softening curve gives the total external work on the test specimen and not the
fracture energy. The fracture energy follows from half this area that is equal to the critical strain energy release rate at
the first crack increment. For wood this is correctly applied for mode II. For mode I however, as for other materials,
the total area is wrongly regarded, a factor 2 is too high. In some applications, based on crack increment cycles, the error
is even a multiple of this factor 2. On the other hand, the measurements at softening may show an apparent decrease of the
specific fracture energy that can be explained by a small crack joining mechanism when the ultimate state of the ligament of
the test specimen is reached. Post fracture behaviour is thus not comparable with the behaviour of macro crack initiation.

It is further shown, by the kinetics of the process, that the irreversible work of an ultimate loading cycle is proportional
to the activation energy of the fracture process and not to the driving force of the process. This explains why the crack
velocity decreases with the increase of this irreversible work and increases with the stress intensity increase.

The fracture energy is a function of the Griffith strength and is thus related to the effective width of the test specimen
and not to the ligament length. This also has to be corrected. Based on the derivation of the softening curve, the reported
fracture toughness of 720 kN m�1.5 of double-edge notched tests is corrected to 330 kN m�1.5 and the value of
467 kN m�1.5, based on the fracture energy, of the compact tension tests, is also corrected to the right value of
330 kN m�1.5. A revision of published mode I data, based on the fracture energy obtained by the area of the softening
curve, is thus necessary.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The analysis followed here is not based on the sin-
gularity approach, thus on stresses at a distance of
the singularity, but on determining the ultimate
stresses at the crack boundary. Further, wood and
other orthotropic materials should be regarded as

reinforced materials. The applied orthotropic Airy
stress functions are based on the spread out of the
reinforcement to act as a continuum, satisfying the
equilibrium, compatibility and strength conditions.
In reality only this can be achieved by the interaction
through the matrix and the orthotropic solution is
thus not right for reinforced materials because the
equilibrium conditions and the strength criterion of
the matrix, as a determining element, then are not
satisfied. This is corrected in [1] by applying the Airy

0167-8442/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.tafmec.2007.05.001

* Tel.: +31 152851980.
E-mail address: vanderp@xs4all.nl

Theoretical and Applied Fracture Mechanics 48 (2007) 127–139

www.elsevier.com/locate/tafmec



Author's personal copy

stress function for the stresses in the isotropic matrix
giving the right general solution identical to the
empirical mixed mode Wu-failure criterion for
wood, concrete and fiber reinforced plastics, that
is, written in mode I and II stress intensities

KI=KIc þ ðKII=KIIcÞ2 ¼ 1; ð1Þ

where KIIc is proportional to KIc according to Eq.
(A.10) of the Appendix.

From the derivation in [1] follows that there is
always enough energy for the fracture, but also that
the stress should be high enough for failure. Thus
the critical fracture energy equation is identical to
the failure condition as is shown in [1] and in the
Appendix. In Appendix it is also shown that Eq.
(1) is an extension and a special case of the SED cri-
terion, e.g. given in [2].

Because of the initial fracture of the isotropic
matrix in [3] the derived orthotropic relations
between the fracture energy and the mode I and II
stress intensities do not apply and do not fit to the
measurements of, e.g. [4]. The isotropic relations
apply for the strength of the matrix and the matrix
stresses determine the stresses of the reinforcement
and by that the external loading.

There is also no need for simulation of the steep-
est stress gradient [5], because the direction of crack

extension is already known from the critical stress
state providing the lower bound solution that is
based on the (physical possible) flat elliptical crack
[1]. For mode I, regarded here because of the neces-
sary correction of the fracture energy, the initial
crack and crack extension are both in the grain
direction, but the following derivation is compara-
ble for mode II and the mixed mode [1].

2. Fracture energy, strain energy and energy release

rate

The mode I fracture energy, measured by the
specimen of Fig. 1, is stated to be equal to the area
under the softening curve of Figs. 2, 3, 6 or 7,
divided by the total crack area and thus is stated
to be equal to the total work at fracture done by
the external forces on the specimen. This is not
right. It is half this value as will be shown here
and in paragraph 4. In paragraph 4, it is shown that
the fracture energy of mode II of wood is correctly
based on half the area under the non-linear part of
the loading diagram and also that the critical strain
energy release rate, applying at the top of the load-
ing curve, at the start of softening, is correctly in
agreement with the area method, accounting half
the incremental area of this curve according to the

Nomenclature

A area; the index indicates a closed curve
AOAB = AOABO

a crack length; aij = constant
b specimen width
beff effective specimen width
C constant
c half a crack length; cij = constant
cc critical length of crack c
E elastic modulus
Eeff elastic modulus of a plate containing a

crack
E 0 activation energy
G energy release rate
Gxy modulus of rigidity
GC critical energy release rate
K stress intensity factor
KC critical stress intensity factor
KI mode I stress intensity factor
l length of the specimen
N number of fracture sites

R gas constant
r0 radius of the crack boundary
T absolute temperature
t time, or thickness
v displacement
W strain energy increase
a, b, c, g constants
d displacement
e strain
eg strain at the Griffith stress on the yield

locus
k jump of the activated segment
r stress
rc cohesive stress or yield stress in MPa
rg Griffith yield stress
rr real mean stress in the determining weak-

est cross section
rt real local tensile strengths at the crack

boundary
m contraction coefficient
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energy balance. The factor 2 error in the mode I
fracture energy explains why in the RL and TL
direction, the fracture energy of wood is twice the
critical strain energy release rate as is mentioned
as general empirical property in [6, p. 114].

As most materials, wood shows near failure an
apparent plastic behaviour and the loading curve
can be approximated by equivalent elastic–plastic
behaviour. Therefore linear elastic fracture mechan-
ics can be applied based on the ultimate stress at the
elastic–plastic boundary around the crack tip. The
dissipation by microcracking, plastic deformation
and friction within this boundary, called fracture
process zone, can then be seen as parts of the frac-
ture energy of the macro crack extension. The linear
elastic derivation of the softening curve, given in
paragraph 3, shows that the critical strain energy
release rate is equal to the specific fracture energy
as long as the ligament length is not determining.

In the literature, the derivation of Eq. (6) is based
on the reciprocal theorem. However, the following
derivation more clearly shows the essence of the
fracture energy and the energy exchanges.

In Fig. 1, a mode I, center notched test specimen
is given with a length ‘‘l’’, a width ‘‘b’’ and thickness
‘‘t’’, loaded by a stress r showing a displacement d
of the loaded boundary due to a small crack exten-
sion. The work done by the constant external stress
r on this specimen during this crack extension is
equal to

2W ¼ r � b � t � d; ð2Þ

twice the increase of the strain energy W of the spec-
imen so that the other half of the external work,

equal to the amount W, is the fracture energy, used
for crack extension. Thus the fracture energy is equal
to half the applied external energy that is equal to the
strain energy increase W and follows for the total
crack length from the difference of the strain energy
of a body containing the crack and of the same body
without a crack

r2

2Eeff

blt � r2

2E
blt ¼ W : ð3Þ

The fracture energy is also equal to the strain energy
decrease at fixed grip conditions when d = 0

W ¼ tr
Z þc

�c
vda ¼ pr2c2t=E; ð4Þ

where the last two terms give the strain energy to
open (or to close) the flat elliptical crack of length
2c and where ‘‘v’’ is the displacement in the middle
of the crack surface in the direction of r (see [1]).

From Eqs. (3) and (4) it follows that:

r2

2Eeff

blt � r2

2E
blt ¼ pr2c2t=E: ð5Þ

Thus the effective Young’s modulus of the specimen
of Fig. 1 containing a crack of 2c, is

Eeff ¼
E

1þ 2pc2=bl
: ð6Þ

It follows from the kinetics of crack propagation
that the critical crack length is in an unstable equi-
librium. Thus for a crack length 2c in a material of
thickness t, the condition of unstable equilibrium is

o

oc
ðW � Gc2ctÞ ¼ 0; ð7Þ

where Gc is the fracture energy for the formation of
the crack surface per unit crack area. Because
Gc ¼ oW =oð2ctÞ, it clearly also is a strain energy re-
lease rate when applied to Eq. (4). With W of Eq. (3)
or of Eqs. (4), (7) becomes

o

oc
pr2c2t

E
� Gc2ct

� �
¼ 0;

or
o

oc
r2blt
2E

1þ 2pc2

bl

� �
� r2blt

2E
� Gc2ct

� �
¼ 0

giving both the Griffith strength

rg ¼
ffiffiffiffiffiffiffiffiffi
GcE
pc

r
: ð8Þ

This stress is related to the width b of the specimen
of Fig. 1. The real mean stress in determining the

Fig. 1. Specimen b times l with thickness t, containing a flat crack
of 2c.
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weakest cross section with width b–2c, where
fracture occurs is

rr ¼
ffiffiffiffiffiffiffiffiffi
GcE
pc

r
� b
b� 2c

¼
ffiffiffiffiffiffiffiffiffi
GcE
pb

r
� 1

ð
ffiffiffiffiffiffiffi
c=b

p
Þ � ð1� 2c=bÞ

ð9Þ

and

orr

oð
ffiffiffiffiffiffiffi
c=b

p
Þ
¼

ffiffiffiffiffiffiffiffiffi
GcE
pb

r
� 6c=b� 1

ðc=bÞ � ð1� 2c=bÞ2
> 0;

when c=b > 1=6;

that always is the case for critical crack lengths and
the real stress rr increases monotonically with the
increase of the crack length c and no softening
behaviour exists at the critical site. Softening thus
only exists outside the critical cross section and is
identical to elastic unloading of the specimen out-
side the fracture zone and thus also in this case, soft-
ening is not a material property as is assumed in the
existing models for wood and concrete.

3. The strain softening curve

A simple description of the softening behaviour
as a result of former crack propagation alone is pos-
sible by the Griffith theory. Straining the specimen
of Fig. 1 to the ultimate load at which the initial
crack will grow, gives according to Eq. (6): eg =
rg/Eeff = rg Æ (1 + 2pc2/bl)/E.

Substitution of c ¼ GcE=pr2
g, according to Eq.

(8), gives

eg ¼ rg=E þ 2G2
cE=pr3

gbl: ð10Þ

This is the equation of critical unstable equilibrium
states should therefore apply along the softening
curve (for a sufficiently long ligament length of the
test specimen). This curve, called Griffith locus,
has a vertical tangent deg/drg = 0, occurring at a
crack length of

cc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
bl=6p

p
: ð11Þ

Cracks smaller than 2cc are unstable because of the
positive slope of the locus. These cracks extend dur-
ing the loading stage, by the high peak stresses at
the notch of the test specimen, to a stable length
and only crack lengths higher than cc are to be ex-
pected at the highest stress, giving the stress–strain
curve of Fig. 4 with rc as a top value (or rc ran-
domly above the top value of the real curve).

For a distribution of small cracks, b and l in
Eq. (11) are the crack distances and the critical
crack distance for extension is about 2.2 times the
crack length; this occurs when b � 2.2 Æ 2cc and
l � 2.2 Æ 2cc, or bl � 19 � c2

c � 6pc2
c . This critical dis-

tance is predicted by deformation kinetics [7] and is
used in paragraph 8.

According to Eq. (10), the softening line can now
be given as

eg ¼
rg

E
1þ r4

c

3r4
g

 !
; ð12Þ

where

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EGc=pcc

p
ð13Þ

is the ultimate load with cc according to Eq. (11).
The negative slope of this softening line is

org

oeg

¼ � E
r4

c

r4
g
� 1
¼ � E

c2

c2
c
� 1

: ð14Þ

A vertical yield drop occurs at the top at rg = rc,
and the strain then is: egc = (rc/E) Æ (1 + 1/3) and
Eq. (12) becomes

eg

egc

¼ 0:75 � rg

rc

þ r3
c

3r3
g

 !
: ð15Þ

In general Eq. (12) can be written, when related to a
stress level rg1

eg

eg1

¼ rg

rg1

�
1þ r4

c=3r4
g

1þ r4
c=3r4

g1

¼ rg

rg1

� 1þ ðrc=rg1Þ4 � ðrg1=rgÞ4=3

1þ ðrc=rg1Þ4=3
: ð16Þ

To control whether rc changes, Eq. (16) can be writ-
ten as

rc

rg1

¼
3 � ðrg=rg1Þ3 � ðeg=eg1Þ � ðrg=rg1Þ

� �
1� ðeg=eg1Þ � ðrg=rg1Þ3

 !0:25

ð17Þ

with the measured values on the right hand side of
the equation. When rc decreases, the mechanism
discussed in paragraph 8 is determining for soften-
ing and the value of rc. However, as an approxima-
tion, Eq. (15) can also be applied with a stepwise
decrease of rc, as is discussed in paragraph 8.

Applications of the Griffith locus can be found in
numerous publications in the past, e.g. in [5], where
it is used as a failure criterion for the onset of unsta-
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ble crack growth. Here it is shown that the stable
part of the locus should represent the softening
curve. It will be further shown that the occurring
softening curve may differ from the Griffith locus
and may be steeper due to the crack joining mecha-
nism discussed in paragraph 8.

4. Fracture energy as area under the softening curve

The basic theory of the energy method, leading to
Eqs. (2) and (3), should be confirmed by the loading
curve (Fig. 2). This will be discussed in the
following.

When a test specimen is mechanically condi-
tioned, the effective stiffness is obtained given by
the lines OA and OC in Figs. 2 and 3. In Fig. 2,
the area OAB, written as AOAB, is the strain energy
of the specimen of Fig. 1 with a central crack (or

with two side cracks according to Fig. 5) with a
width ‘‘b’’, length ‘‘l’’ and thickness ‘‘t’’ loaded to
the stress r. During the quasi static crack extension
from B to D in Fig. 2, the constant external load r
does the work on the specimen of

r � b � t � DeBD � l ¼ r � b � t � dBD ¼ AABDC;

where DeBD is the strain increase due to the cracking
and dBD the corresponding displacement. The strain
energy after the crack extension is AOCD and the
strain energy increase by the crack extension is thus
shown in Fig. 2

AOCD � AOAB ¼ AOCD � AOCB ¼ ACBD ¼ AABDC=2:

Thus half of the external energy r Æ b Æ t Æ dBD/2 is the
amount of increase of the strain energy due to the
elongation by d, and the other half is thus the frac-
ture energy that is equal to this increase of strain
energy.

The same follows at unloading at yield drop.
Because every point of the softening curve gives
the Griffith strength, which decreases with increasing

Fig. 4. Softening curve according to Eq. (10) for the specimen of
Fig. 1 or 5.

Fig. 2. Stress–displacement curve for tension of the specimen of
Fig. 1 or 5.

Fig. 3. Descending branch of the stress–displacement curve of
Fig. 2. Fig. 5. Geometry of the specimens [4].
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crack lengths, unloading is necessary to maintain
equilibrium. The fracture with unloading step AC
in Fig. 3 is energy equivalent to the unloading steps
AE and FC and the fracturing step EF at constant
stress EB = FD = (AB + DC)/2. Thus AABDC =
AEBDF. Identical to the first case of Fig. 2, the
increase in strain energy due to crack extension is

AODF � AOBE ¼ AODF � AOBF ¼ ABFD

¼ 0:5 � AEBDF ¼ 0:5 � AABDC;

equal to half the work done by the external stresses
during crack propagation and thus also equal to the
other half, the work of crack extension. The deriva-
tion further shows that there is more energy avail-
able than necessary for fracture as also found in
[1], mentioned in paragraph 1. The conclusion is
that not the total area under the load–displacement
curve, divided by the corresponding total crack
length (including the initial length), is equal to the
specific fracture energy, but only half this area.
The published mode I values of the so-determined
fracture energies thus need to be corrected. This is
not the case for mode II. In the same way as for
mode I, half the area under the non-linear part of
the loading diagram is equal to the fracture energy
for mode II. For this mode, only line OACO
in Fig. 2 is measured and AOAC is regarded to be
the fracture energy. Because AOAC = ABAC = 0.5 Æ
AABDC, this is right and mode II needs no
correction.

5. Necessary corrections of the fracture energy

As shown above, the area under the load–
displacement curve is equal to the work done by
the external stresses and half this work is used for
fracture.

Thus for the extension BD in Figs. 2 and 3, the
fracture energy (AABDC/2 or AEBDF/2) is at constant
stress r (AB or EB)

r � b � t � dBD=2 ¼ r � b � t � l � De=2

¼ r2 � b � t � l
2

� 1

E
� 1þ ðcþ DcÞ2

3 � c2
c

 !
� 1

E
� 1þ c2

3 � c2
c

� � !

¼ r2btl
2E
� 2cDc

3c2
c

¼ r2btl6pcDc
3Ebl

¼ r2t2pcDc
E

: ð18Þ

This is equal to the increase of fracture energy at
crack extension of DðGc � t � 2cÞ ¼ 2 � Gc � t � Dc. Thus,
r2t2pc=E ¼ 2Gct; or : rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EGc=ðpcÞ

p
, equal to

the Griffith strength and thus showing that the
fracture energy Gc is equal to the energy release rate.
Thus it is now shown that half the area AABDC/2 is
equal to the fracture energy and not the whole area
and it is also shown that the totally different
amount AOACO of Fig. 3 is not equal to the fracture
energy, as is supposed in [8] for crack increments
(see paragraph 6).

Because Eq. (3) is based on the total crack length
and the strength is a Griffith stress, the initial value
2c of the crack length should be accounted for and r
and Gc should be related to the whole crack length,
including the initial value, and thus should be
related to the whole specimen width b and not to
the reduced width of the ligament: b–2c as is done
now. This is the second necessary correction of the
mode I fracture energy Gc.

A third correction is necessary when rc of Eq.
(12) changes. Then Eq. (18) becomes

r � btdBD=2 ¼ r2btl
2
� 1

E
� 1þ ðcþDcÞ2

3 � ðcc þ DccÞ2

 !
� 1

E
� 1þ c2

3 � c2
c

� � !

¼ DðGct2cÞ ¼ Gct2 �Dcþ t2c � DGc;

or:
r2pc

E
1� Dcc

cc

� c
Dc

� �
¼ Gc þ

DGc � c
Dc

or:
DGc

Gc

¼ �Dcc

cc

¼ �D lnðccÞ: ð19Þ

Thus the apparent decrease of the energy release
rate DGc is proportional to Dln(cc). The apparent
value of Gc may decrease at the end of the fracture
process, when the ligament strength of the test spec-
imen becomes determining, due to the small crack
extension, reducing the ligament area of the speci-
men. This is discussed in paragraph 8. The measure-
ments of [4], on the test specimens of Fig. 5, show a
strong influence of this ligament fracture mecha-
nism and there thus is a difference between this spe-
cific fracture energy of the post fracture state and
the strain energy release rate of crack initiation
based on the ultimate Griffith strength at the top
of the softening curve.

6. Irreversible work of an ultimate loading cycle

The irreversible energy of a loading cycle with a
crack increment on a test specimen is given by the
triangle AOACO in Fig. 3. The superfluous elastic
unloading parts, not needed for the fracture energy
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calculation are AOEA and AOCF.and the fracture
energy is given by the area AOEF. In [8], AOACO is
measured, at different crack velocities, for a range
of crack increments on the same specimen. The area
of AOACO = AOEF + (AOAE + AOCF) or

AOACO ¼ r � btl � De=2þ jDrj � btl � e

¼ r � btl � De
2

1þ Dr
De

				
				 � er

� �
:

Inserting Eqs. (12) and (14) gives

AOACO ¼
r2t2pcDc

E
1þ 1þ r4

c

3r4

� �
� 1

r4
c=r

4 � 1

� �� �

¼ r2t2pcDc
E

� 4=3

1� ðr=rcÞ4
:

This area is supposed to be equal to an apparent
fracture energy Gc,a. It is already shown that the first
term is equal to the Griffith fracture energy Gc

according to: D(Gct2c) = 2Gct Æ Dc and thus Gc,a is
assumed to be proportional to Gc which also ap-
plies: D(Gc,at2c) = 2Gc,a t Æ Dc, giving

Gc;a ¼
r2pc

E
� 4=3

1� ðr=rcÞ4
¼ Gc �

4=3

1� ðr=rcÞ4

¼ Gc �
4=3

1� ðcc=cÞ2
: ð20Þ

This equation only applies as long as the modified
Griffith locus, (Eq. (12)), is followed during soften-
ing, thus, maximal to about half the unloading for
the specimen of Fig. 5. When the slope of the soft-
ening curve at the start fits to cc/c � 0.9, then Gc,a �
7 Æ Gc. When this is cc/c � 0.8, then Gc,a � 3.7 Æ Gc.
Thus different factors can be measured depending
on the steepness of the softening curve at the start.
This result demonstrates that Gc,a is not the fracture
energy but contains, as shown, a superfluous
amount of energy for fracture.

As mentioned, depending on the ligament length
of the test specimen, a crack joining mechanism, dis-
cussed in paragraph 8, may become determining for
the softening stage and Eq. (12) then does not apply
any more because cc increases with c and the Griffith
Gc decreases because of the decreasing ligament area
due to the small crack extension at the ligament.
The softening curve is then found by integration
of the common damage equation of [7]. This behav-
iour and the meaning of Gc,a will be explained in
paragraph 8.

7. Experimental verification

Testing the theory the best can be done by the
elementary stress states of the center notched, or
double-edge notched specimens. The measurements
of [4] are sufficiently complete by measuring the
whole loading and softening curve and using the
compact tension tests as control, being a control
by the different loading case.

The graphs of [4], Figs. 6 and 7, are the result of
tension tests on the specimen of Fig. 5. The length
of the specimen was l = 3 mm, the width and thick-
ness: b = t = 20 mm and the notch length 2c = 2 ·
5 = 10 mm with a notch width of 0.5 mm.

The double-edge notched specimen was used in
[4] at the highest moisture content because the single
side notched specimen failed at the glued bound-
aries. Therefore also a shorter ligament length was

Fig. 6. Stress–displacement of specimen T 1409 of [4].

Fig. 7. Stress–displacement of specimen T 1509 of [4].
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necessary. However, the ligament strength now
becomes determining and also the boundary discon-
tinuity at the glued steel plates still may remain
determining as is shown.

In the Figs. 6 and 7, the measured stress–dis-
placement is given together with the lines 1 and 2
according to Eq. (15). The strain eg follows from
the displacements at the x-axis of the figures divided
through 3 mm, the measuring length and length of
the specimen. Because of the small length of
3 mm, not the whole width b of the specimen is
active. Assuming a possible spreading of 1.2:1,
through the thickness of 1.25 mm above and below
the side notches, the working width beff is equal to
the ligament length plus two times 1.2 · 1.25 or
beff = 10 + 3 = 13 mm. Thus the real specimen has
the same dimensions as given in Fig. 5, except for
the notch lengths that should be regarded to be
1.5 mm instead of 5 mm. The stresses in the Figs.
6 and 7 of [4], are related to the ligament length
and not to beff, according to the Griffith stress.
Thus the stresses have to be reduced by a factor
10/13 = 0.77.

The standard compact tension tests of [4] did
show a stress intensity KIc of 330 kN m�3/2. This
result is independent of the chosen stiffness as fol-
lows from the calculation according to the series
solution or according to the energy method. This
is verified in [4] by comparing the series solution
with a finite element compliance calculation using
the isotropic and the orthotropic stiffness and the
orthotropic stiffness of [3]. The value of KIc =
330 kN m�3/2, found in all cases, thus also should
follow from the area under the softening curve of
that compact tension test. When half the area of
that diagram is taken to be the fracture energy,
instead of the total area, then KIc, mentioned in
[4], indeed is corrected to the right value of: 467/p

2 = 330 kN m�3/2. This result of the standard
compact tension test thus is a first experimental ver-
ification of the theory.

Regarding the short double-edge notched speci-
mens of Fig. 5, the measured E-modulus should
be related to the effective width of 13 mm instead
of the ligament width of 10 mm and therefore is
E = 700 · 10/13 = 700 · 0.77 = 539 MPa. The criti-
cal energy release rate then is

Gc ¼ K2
Ic=E ¼ 3302=539 ¼ 200 N=m: ð21Þ

The measured value of Gc from the area under the
stress–displacement curve is given in [4] to be
515 N/m. But, because half this area should have

been taken and this value is wrongly related to the
ligament length instead of on beff, the corrected
value is: 1/2 · 515 · 0.77 = 200 N/m, as found
above, Eq. (21), giving again an experimental verifi-
cation of the theory, now by the tests on the short
double-edge notched specimens.

It is seen that the curve of Fig. 6 has a vertical
tangent at the top drg/deg =1. The critical crack
length there thus is: cc ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
bl=6p

p
according to

Eq. (11). Thus

cc ¼
ffiffiffiffiffiffiffiffiffi
beffl
6 � p

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
13 � 3
6 � p

r
� 10�3 ¼ 1:5 � 10�3 m

¼ 1:5 mm: ð22Þ

In Fig. 6, at the Griffith maximal stress of
(0.77) Æ 7 = 5.39 MPa, is: KIc ¼ r

ffiffiffiffiffi
pc
p

or

KIc ¼ 5:39 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p � 1:5 � 10�3

p
¼ 0:37 M Nm�3=2: ð23Þ

Line 1 of Fig. 6 gives the primary crack extension,
Eq. (15), with rc = (0.77) Æ 7 = 5.39 MPa and a dis-
placement of about 0.03 mm, or a strain of 0.03/
3 = 0.01. The ligament strength of 7 to 8 MPa is
exceptionally high and only measured 6 times of
the 117 tests. The crack does not propagate in a free
space, but in the limited length of the ligament and
this area will be overloaded. Curve 1 therefore levels
off from the measurements at r = 0.77 Æ 4 MPa.
Thus

rg ¼
ffiffiffiffiffiffiffiffiffi
EGc

p3cc

r
¼ 0:57 � ð0:77 � 7Þ ¼ 0:77 � 4 MPa ð24Þ

and the crack length has become about three times
the initial critical value cc,0. Thus the initial crack
of 1.5 mm has traveled two times 1.5 mm = 3 mm
and the intact part of the ligament is 10 � 3 =
7 mm. Only one of the 2 side notches is extended,
(probably by a high local strength due to crossing
ray cells). When both notches extend 1.5 mm, the
same intact ligament length of 7 mm occurs and

rg ¼
ffiffiffiffiffiffiffiffiffi
EGc

p2cc

r
¼ 0:77 � 4:9 MPa: ð25Þ

Corrected by the measured
ffiffiffiffiffiffiffiffiffi
EGc

p
values of 600/640

to the mean value of the series, this stress becomes

rg ¼ 0:77 � 4:9 � ð600=640Þ ¼ 0:77 � 4:6 MPa: ð26Þ

This higher value of 4.6 instead of 4, shows the high-
er strength that is possible when the extensions from
both sides are not in the same plane. The level above
4 (to 4.6) MPa is measured in 3 of the 10 specimens
of the discussed series T1309/2309 of [4] and an
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example is given in Fig. 7. The other specimens of
this series did show strength values lower than
4 MPa, indicating that the ligament strength was
determining for softening.

The behaviour according to Eq. (16), down to the
stresses of Eq. (24) and lower, is verified by Eq. (17),
showing that in Fig. 6, rc is constant and equal to
rc/0.77 = 7 MPa for rg/0.77 = 7 down to rg/0.77 =
4 MPa and then reduces gradually to rc/0.77 = 4.5
at rg/0.77 = 2 and further to rc/0.77 = 3 at rg/0.77 =
1 MPa. The same applies for Fig. 7, rc/0.77 =
7 MPa above rg/0.77 = 4 MPa and then reduces in
the same way. These results are given in Table 1.
The departure from the Griffith theory by the grad-
ual decrease of rc, below rg/0.77 = 4 MPa, is due to
the failure of the high loaded ligament that is
explained in the next paragraph.

8. Crack joining mechanism

The discussed apparent decrease of the fracture
energy Gc of the Griffith theory, due to reduction
of intact ligament area of the specimen by small
crack extensions at the ligament, can be explained,
using the equilibrium method, by the joining of
the small cracks as follows.

In [7] it is shown that the critical intermediate
small crack distance of a fracture process in ‘‘clear’’
wood, and thus in the ligament, is about equal to
the crack length, as given in scheme A. In paragraph
3, a crack distance of 2.2 times the crack length is
found, that for simplicity the model is rounded
down here to 2, giving slightly too high stresses
(see Table 1). For these small

cracks, the critical crack length according to Eq.
(11) then is: cc ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
lb=6p

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � ð2c0Þ � 2 � ð2c0Þ=

p
ð6pÞ ¼ 0:92 � c0, for the specimen with row A.

The distance l between the rows, above each
other, is always two times the crack length, being
the Saint-Venant distance for building up the stress
again behind a crack to be able to form a new crack.
Thus l = 2 Æ 2c for row A, and l = 2 Æ 6c = 12c in
row B, and 2 Æ 14c = 28c in row C. The crack dis-
tance b in row A is b = 4c, and b = 8c in row B,
and 16c in row C. Thus when crack pairs of row
A join together, a crack length of 6c occurs, at a dis-
tance 8c, and so on. The critical crack length thus is
for row B

cc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
lb=6p

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 � 8 � c2

0=ð6pÞ
q

¼ 2:26 � c0 and

cc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
lb=6p

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
28 � 16 � c2

0=ð6pÞ
q

¼ 4:88 � c0 for row C:

The critical stress rc is for row A

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EGc

p0:92c0

r
¼ 1:04 �

ffiffiffiffiffiffiffiffiffi
EGc

pc0

r
¼ 1:04 � rcm

¼ 1:04 � 0:77 � 7 ¼ 0:77 � 7:3 MPa;

and for row B: rc ¼ rcm � 1=
ffiffiffiffiffiffiffiffiffi
2:26
p
 �

¼ rcm � 0:67

¼ 0:67 � 0:77 � 7 ¼ 0:77 � 4:6 MPa;

and for row C: rc ¼ rcm � 1=
ffiffiffiffiffiffiffiffiffi
4:88
p
 �

¼ rcm � 0:45

¼ 0:45 � 0:77 � 7 ¼ 0:77 � 3:1 MPa:

The determining ligament strength is

rm ¼ ru � 2c=b ¼ ru � 2c=4c ¼ ru=2 ¼ 4 � 0:77 MPa for case A;

rm ¼ ru � 2c=8c ¼ ru=4 ¼ 2 � 0:77 MPa for case B; and

rm ¼ ru � 2c=16c ¼ ru=8 ¼ 1 � 0:77 MPa for case C:

Thus the decrease of the Griffith values rc and Gc is
fully explained by the ligament strength rg = rm as
is verified by the measurements. As mentioned be-
fore, Eq. (17) of rc, of the softening curve gives
the measurement of Figs. 6 and 7 in the first two col-
umns of Table 1, besides the prediction of the crack
joining mechanism in column 3 and 4. This mecha-
nism thus precisely explains the decrease of rc of the
softening curve, Eq. (16).

A simple approximation for practice of the mean
softening curve of all specimens of the series, is
possible by applying Eq. (15) twice. The first time
at the top of the curve (line 1 in Fig. 7), according
to the case of small cracks extension of all cracks
at the same time and further to apply Eq. (15) again
at half the strength value (line 2 in Fig. 7), as a mean
behaviour of the following crack joining process.
Thus a one step decrease of rc is assumed instead

Table 1
Softening by crack propagation followed by ligament failure

Softening curve Eq. (17) with
measurements of [4]

Crack joining model ligament
strength: rg/0.77

rc/0.77 rg/0.77 rc/0.77 rg/0.77
7 7 7.3
7 4 7.3 4
4.5 2 4.6 2
3 1 3.1 1
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of a gradual decrease. It should be remarked that
the extreme strong specimen of Fig. 6, due to non-
comparable, one sided, crack propagation, should
be omitted from the data. Further, the lowering of
the data line below line 2 in Fig. 7 is due to an
increase of the applied strain rate by a factor 7.

The analysis above shows that in general

2cnþ1 ¼ 2 � 2cn þ 2c0; giving 2c1 ¼ 6c0 and

2c2 ¼ 2 � 2c1 þ 2c0 ¼ 14c0:

The increase of the crack length is: D(2c) 0 = 2cn+1 �
2cn = 2cn + 2c0. Including the initial crack length of
2c0, the increase of the total crack length is

Dð2cÞ ¼ 2cnþ1 � 2cn � 2c0 ¼ 2cn: ð27Þ

More general for any crack distance this is:
D(2c) = b1 Æ 2c and because the strength decrease is
proportional to the area decrease of the ligament
area of the test specimen, due to small cracks exten-
sion there, the equation becomes

Dð2cÞ=ð2cÞ ¼ �b2 � DðGcÞ ð28Þ

comparable to Eq. (19), giving the explanation of
the decrease of rc.

Eq. (28) can also be expressed in the mean crack
velocities by replacing c by _c � t, the mean crack
velocity _c times time t. Thus: Dð2cÞ=ð2cÞ ¼
Dð _ctÞ= _ct ¼ D _c= _c. Then integration of Eq. (28) leads
to

Gc;a ¼ Gc;a;1 � c � lnð _cÞ: ð29Þ

This is measured in [8] for the irreversible work of
loading cycles. Measured are two processes. One
with a small slope c, and one with a high value of
c. The slope c is small for crack velocities _c above
2.4 mm/s and is high below this velocity. For
instance in the RL direction, at crack velocities
between _c ¼ 0:2 to 2.4 mm/s, is found

Gc;a ¼ 258� 150 � lnð _cÞ; ð30Þ

running from Gc,a = 500 N/m at 0.2 mm/s to
Gc,a = 126 N/m at 2.4 mm/s. However, from other
slow crack growth investigations, only the high
crack velocity process of [8] with the small value
of c is found as, e.g. is shown in [9]. Further, in
the overlapping range of 0.01 mm/s to 1 mm/s, no
decrease, but an increase of the stress intensity KI,
thus of

ffiffiffiffiffiffi
Gc

p
, is measured. This can be explained

as follows. Eq. (29) can also be written

_c ¼ _c0 � exp �E0 � rtk=N
RT

� �
; ð31Þ

where _c0 is the maximal value of _c; E 0 the activation
energy, containing the enthalpy and entropy terms;
rtk/N the work term by the stress rt on the site [7]; R

the gas constant and T the absolute temperature.
Eq. (31) is a special case of the general damage

equation of softening of [7], that applies because
mean rates _c of the crack increments are regarded.
This equation can be related to a reference value _c1

lnð _cÞ ¼ lnð _c1Þ � ðE0 � rtk=NÞ=RT

þ ðE0 � rt;1k=N 1Þ=RT ð32Þ

For _c1 ¼ 1 mm=s, it follows from Eqs. (29) and (32)
that

Gc;a=c ¼ ðE0 � rtk=NÞ=RT ð33Þ

and it is seen that Gc,a, the irreversible work of an
ultimate loading cycle, discussed in paragraph 6, is
proportional to the apparent activation energy of
the process and is not the driving force of the pro-
cess. Gc,a decreases with the increase of the driving
force rt. Therefore the crack velocity decreases with
the increase of Gc,a because the driving force rt

decreases. According to Eq. (30) is measured:
Gc,a/c = 258/150 = 1.72, that means rt,1k/RTN1 is
close to E 0/RT at fracture because these terms are
much higher than 1.7. The high value of c and the
small influence of the moisture content on the slope
and the shift of the curve indicates that this process
is a mechanosorptive process [7]. This probably is
due to the moisture transport during the testing
due to the other climatic conditions than those of
the conditioned specimens. The testing should be
repeated at constant climate conditions for veri-
fication.

Eq. (32) also can be written as

lnð _cÞ ¼ lnð _c1Þ þ rtk=NRT � rt;1k=N 1RT ; ð34Þ

and measurements show that the number of sites N is
proportional to the applied stress rt and the initial
value of N thus is proportional to the ever applied
maximal stress rt,m. This is a property of many mate-
rials that explains, e.g. the time–stress equivalence
found in [7]. In Eq. (34) thus is rt,m/N = rt,1/N1

and Eq. (34) becomes n = rt,1k/N1RT = rt,mk/NRT

lnð _cÞ ¼ lnð _c1Þ þ n � rt=rt;m � n; or

rt

rt;m

¼ 1þ 1

n
ln

_c
_c1

� �
ð35Þ

showing the increase of the crack velocity _c with the
increase of rt. By multiplication of the local tensile
strengths at the crack boundary rt and rt,m with
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ffiffiffiffiffiffiffiffiffi
2pr0

p
, according to [1], the equation is expressed in

the mean stress r in the specimen because
rt;m

ffiffiffiffiffiffiffiffiffi
2pr0

p
¼ r

ffiffiffiffiffi
pc
p

¼ KI, and Eq. (35) becomes

KI

KI;1

¼ 1þ 1

n
ln

_c
_c1

� �
¼ 1þ 1

n0
log

_c
_c1

� �
; ð36Þ

where n 0 is in the order of 60 for wood. This is high
enough for the possibility of primary C–C- and
C–O-bond breaking. The semi log-plot, Eq. (36),
is given, as empirical line, in many publications
from experiments on ceramics, polymers, metals
and glasses and is given in [9] for wood. Because
the slope is small, also the empirical double log-plot
is possible.

The kinetics shows the same behaviour as for
clear wood. As shown in [7], two coupled processes
act, showing the same time–temperature and time–
stress equivalence. One process, with a very high
density of sites, provides the sites of the second pro-
cess with a very low density, as follows from a very
long delay time. The notched specimen discussed
here also shows the low concentration reaction by
the strong softening behaviour. The concentration
here consists of only one initial crack or two crack
tips. In the critical cross section through this notch,
however, there is no softening and here the deter-
mining high concentration reaction acts as follows
from Eqs. (30) or (36). Probably numerous small
cracks grow to the macro notch, providing the site
for the macro crack to grow. This failure mecha-
nism thus applies for every bond breaking process
at any level. Even Eq. (1), written in stresses, applies
for clear wood as follows from the polynomial
description of the failure criterion [10].

9. Conclusions

– A derivation of the softening curve is given based
on small crack extensions joining the crack tip of
the initial notch of the test specimen. The soften-
ing curve follows at the start the stable part of the
Griffith locus. This means that every point of the
softening curve gives the Griffith strength. This
curve, Eqs. (15) or (16), depends on only one
parameter, the maximal critical Griffith stress rc

and thus depends on the critical crack length,
Eq. (13), or critical crack density, Eq. (11). For
the double-edge notched test specimens of [4],
the curve applies until half way to the unloading.
Then the ligament strength of the test specimen
becomes determining which can be precisely
explained by a crack joining mechanism, chang-

ing the crack density and intact ligament area
by the limited ligament area and therefore caus-
ing a decrease of rc and an apparent decrease
of the fracture energy.

– The fracture energy for mode I is stated in litera-
ture to be equal to the area under the softening
curve divided through the total crack length. This
is not right. It is shown here that half this area
has to be accounted. This already is applied
and accepted for mode II in wood.

– It also is stated that the irreversible energy of an
ultimate loading cycle, given by the triangle
AOACO in Fig. 3, divided by the area of the crack
increment, is equal to the fracture energy. This
also is not right. It is shown here that this energy
is proportional to the apparent activation energy
of the fracture process. This explains why the
crack velocity decreases with the increase of this
energy, while the reverse is the case for the frac-
ture energy given by KI in Eq. (36).

– Softening is a matter of elastic unloading of the
specimen outside the fracture zone. The real
mean stress in determining the weakest cross sec-
tion containing the crack, where fracture occurs,
increases with the increase of the crack length.
Softening thus is not a material property.

– The softening curve can be approximated by Eq.
(15) at the start until half the strength value and
then again applying Eq. (15) at half the strength
value.

– The standard compact tension tests of [4] indi-
cated a stress intensity KIc of 330 kN m�3/2.
When the theoretically correct value of half the
area under the stress–displacement line of these
compact tension tests is taken to be the fracture
energy, instead of the total area, then the here-
upon based value of KIc is corrected to the right
value of: 467/

p
2 = 330 kN m�3/2.

– The problem of [4] is solved of recording
on double-edge notched specimens, a KIc of
720 kN m�3/2, that is more than twice the value
of 330 kN m�3/2 of the compact tension tests.
This is explained as follows: The given orthotro-
pic correction does not apply for wood [1].
From the measured E and energy Gc follows:
KIc ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
E � Gc

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
700 � 515
p

¼ 600 MPa instead
of 720 kN m�3/2. However, the measured E-mod-
ulus should be related to the effective width of
about 13 mm instead of the ligament width of
10 mm and therefore is: E = 700 · 0.77 =
539 MPa. The measured critical energy release
rate or fracture energy, measured from the
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area under the stress–displacement curve, should
be based on half this area and also on beff instead
of the ligament length and the given value of 515
N/m should be corrected to: 1/2 · 515 · 0.77 =
200 N/m. Then KIc ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
E � Gc

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
539 � 200
p

¼
330 kN m�3=2, as should be according to the com-
pact tension tests.

– A revision of all published mode I data of the
fracture energy, based on the area of the soften-
ing curve, is necessary. This area method, that
shows the post fracture behaviour and not the
Griffith strength of crack extension, should not
be used anymore. A right description follows
from the apparent energy release rate based on
the measured strength.

– The kinetics of the cracking process throws a
new light on the explanation of strength
behaviour.

Appendix

Fracture mechanics of wood is normally
restricted to fracture along the grain. It is not possi-
ble to have shear crack propagation across the
grain. Also the mixed mode crack follows the weak
material axes and only may periodically jump to the
next growth layer at a weak spot. Applying the SED
criterion of Sih, Eq. (A.1), as fracture criterion for a
crack in these planes of symmetry, the factor a12 = 0
because of the, by symmetry forced, zero angle of
crack extension. Thus

S ¼ a11K2
I þ 2a12KIKII þ a22K2

II ðA:1Þ

becomes

S ¼ a11;0K2
I þ a22;0K2

II: ðA:2Þ

This equation now is the critical energy equation for
the determining fracture of the isotropic matrix. The
reinforcement of wood acts only in the crack direc-
tion and does not affect mode I, but does act as a
shear reinforcement. Thus for the stresses in the
reinforcement, KII has to be multiplied by a factor
g in proportion to the moduli of elasticity of rein-
forcement and matrix [1].

For wood and some other materials there is a
different strength behaviour for tension and com-
pression and accounting for that in one equation
leads to Eq. (A.3), of a shifted curve along the KI-
axis.

S0 ¼ a11;0ðKI þ KI;0Þ2 þ a22;0g
2K2

II: ðA:3Þ

This equation applies for small crack extension of
‘‘clear’’ wood in the tangential plane. Eq. (A.3)
can be written in the form of

1 ¼ c1KI þ c11K2
I þ c22K2

II ðA:4Þ
that also can be read in stresses as failure criterion.
It is shown in [10], that the general second order ten-
sor polynomial may represent a critical energy crite-
rion for failure while higher order terms are due to
hardening and toughening. Wood and some other
materials show such behaviour by the increase of
the shear strength with compression perpendicular
to the crack plane according to the higher order
coupling term 3c122KIK2

II and then now failure after
some toughening is regarded as the ultimate state,
the critical energy equation becomes

1 ¼ c1KI þ c11K2
I þ c22K2

II þ 3c122KIK2
II: ðA:5Þ

This equation can be written

KII

KIIc

� �2

¼
1� KI

KIc


 �
� 1þ aKI

KIc


 �
1þ CaKI

KIc

� 1� KI

KIc

ðA:6Þ

identical to Eq. (1) of the main section paragraph 1,
because C � 0.99 � 1.

The term

1þ aKI

KIc

� ��
1þ CaKI

KIc

� �
� 1 ðA:7Þ

for C ¼ 0:99 gives a sharp cut off of the parabolic
Eq. (A.8) at the compression strength perpendicular
to the grain and thus only is noticeable very close to
this compression strength. Thus Eq. (A.8) applies
generally for mixed mode fracture of wood and
comparable materials

KII

KIIc

� �2

¼ 1� KI

KIc

: ðA:8Þ

In Eq. (A.6) is a = rIc/ruc, the ratio between the
mode I Griffith strength and the compression
strength and is: a = 1 � c1; K2

IIc ¼ 1=c22; K2
Ic ¼

a=c11 ¼ ð1� c1Þ=c11 and 3c122 ¼ Cac22=KIc ¼ 0:99a=
ðKIcK2

IIcÞ ¼ 0:99c22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c11ð1� c1Þ

p
.

If the ultimate compression stress is limited to be
equal to the Griffith strength, then a = 1 and c1 = 0
and the relation between KIc and KIIc is

K2
IIc=K2

Ic ¼ c11=c22: ðA:9Þ

For higher compression stresses, the effective stress
should be regarded [1], accounting for friction. This
is not applied in practice.
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Eq. (A.8) also follows from the exact derivation
in [1] of this mixed mode strength based on the Airy
stress function and it now is thus shown that the
critical energy criterion is equal to the ultimate
strength criterion.

According to [1], the ratio between KIc and KIIc

for plane stress is

KIIc=KIc ¼ 2g ¼ 2ð2þ m21 þ m12ÞGxy=Ey ; ðA:10Þ
where Gxy is the modulus of rigidity; Ey the modulus
of elasticity and m a contraction coefficient.
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